
V

lAfl JA * _ "* . c *
pW/7 fc'Ö J / 7CJ

#vr

DCDftDT Mft 17/0 nbrwni mv. xit7

*■» \/ i a n «s I m & i r\ > Mi it« FI/VFII it i A ki •■ 4« p%
5TIVIÖULMNÜ - A dLir LÄILN5IUN l"UK

ALGEBRAIC MANIPULATION

M. A. Hirschberg

November 1974

ianrttUAri for nun He rftlftitii dlitributlon unllmltid. rTr...» ... r— v -

USA BALLISTIC RESEARCH LABORATORIES
ABERDEEN MOVING MOUND. MARYLAND

;.'*:,!y -XU"';--'y^ ■' ■■ ■ •'■' ■■■ --.; >£. ;" >c; >s>n*r*^Ä^V"^.,,..1 '-Ja- ,.'-l;'. :...„:S\>'

Destroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating
or sponsoring activity is prohibited.

Additional copies of this report may be obtained
from the National Technical Information Service,
U.S. Department of Commerce, Springfield, Virginia
22151.

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
DVI?/^DU f*f\ltm CTTM/. DnDU DK.i' wi\d ^.unrLbiuiu runn

1. REPORT NUMBER

BRL REPORT NO. 1749

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

«. TITLE (and Subtitle)

SYMBOLANG - A SLIP EXTENSION FOR ALGEBRAIC
MANIPULATION

5. TYPE OF REPORT A PERIOD COVERED

S. PERFORMING ORG. REPORT NUMBER

7. AUTHORf«.) 8. CONTRACT OR GRANT NUMBERf«)

9. PERFORMING ORGANIZATION NAME AND ADDRESS

USA Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland 21005

10. PROGRAM ELEMENT. PROJECT, TASK
AREA « WORK UNIT NUMBERS

Program Element 62618A
iiujeuL iiuuiaioftnou

11. CONTROLLING OFFICE NAME ANO ADDRESS
US Army Materiel Command
^fini Fi qpnhowpr Avpnnfi

Alexandria, VA 22304

12. REPORT DATE

NOVEMBER 1974
1* uiiuRPR r*F ptr.p^

29
14. MONITORING AGENCY NAME a *.OORESS(ll different from Controlling Office) 15. SECURITY CLASS, (of thla report)

UNCLASSIFIED
15» DECl ASSIFI CATION/ DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of thta Report)

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19- KEY WORDS (Continue on reverse aide If neceaaary and Identify by block number)

Algebraic Manipulation Formula Manipulation
Symbol Manipulation Data Manipulation
List Processing Formula Translation
List Manipulation Symbolic Processing

String Processing
20. ABSTRACT (Continue on reveraa aide If neceaaary and Identify by block number)

SYMBOLANG, originally developed by A. Lapidus, M. Goldstein, S. Hoffberg, and
expanded by H. Bernstein, S. Greenspan, A. Magnus, and others is a collection
of FORTRAN-callable subroutines which can perform arithmetic operations
(addition, subtraction, multiplication, division, etc.). substitutions,
evaluations, and differentiations on expressions represented as SLIP lists.
SYMBOLANG consists of seventy-two subprograms and is operational on the
BRLESC II computer.

DD ,: FORM
AM 73 1473 EDITION OF t NOV »5 IS OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

TABLE OF CONTENTS

INTRODUCTION.

A. Background 5
B. Ordering and Simplification 7
C. System Usage 7

TT ^YMRni ÄMr: ^iiRRmmMPc; Q

A. Basic Set 9
B. Expanded Capability Set 21

III PROGRAM EXAMPLES 22

A. Inputs and Outputs 22
B= Arithmetic Calculation 23
C. Differentiation 24
D. Truncation 25
E. Evaluation 26

IV LUINLLUU1NL. KfcMAKK.b ZÖ

nTSTRTRIITTDN T.TST , , , , , 29

I. INTRODUCTION

A. Background

SYMBOLANG was written by Lapidus,* Goldstein and HofFoerg between
1965 and 1967 and extensively expanded by Bernstein,2 Greenspan, Magnus
and others in 1969. It is a collection of FORTRAN-callable subroutines
which can perform arithmetic operations (addition, multiplication,
subtraction, division, etc.), substitutions, evaluations, and differen-
tiations on expressions represented as SLIP lists. 3,l+'5 It allows the
performance of such operations as multiplying the expression (1 + x) by
the expression (1 - x) to obtain the expression (1 - x2) rather than
some numeric value. SYMBOLANG is one of several formula manipulation6

or algebraic manipulation systems in existence.

SYMBOLANG has been used extensively. It has been employed in
generating coefficients for Taylor series, coefficients for the solution
of partial differential equations with boundary values, expansion of
determinants, and differentiation of complicated expressions. In addi-
tion to the many subroutines provided in SYMBOLANG, the user has the
ability to define new functions at will and incorporate them into the
system.

SYMBOLANG is an extension of SLIP, which SYMBOLANG uses as a list
processing system. The virtue of using a list processing system for
embedding a symbol manipulator is that the space needed to treat

^apidus, A., and Goldstein, M. Some Experiments in Algebraic Manipula-
tion by Computer. Communications of the Association for Computing
Machinery, 1965, 8_ "501-508.

^Findler, N. V., Pfaltz, J. L., and Bernstein, K. J., Four High-Level
Extensions of Fortran IV: SLIP, AMPPL-H, TREETRAN, SYMBOLANG.
New York, Spartan Books, 1972, 305-387,

3Weizenbaum, J., Symmetric List Processor. Communications of the
Association for Computing Machinery, 1963, 6_, 524-544.

4Hirschberg, M. A. SLIP for the BRLESC II Computer, BRL R 1731, July
1974

5Findler, N. V., Pfaltz, J. L,, and Bernstein, H. J., Four High-
Level Extensions of Fortran IV: SLIP, AMPPL-II, TREETRAN, SYMBOLANG.
New York, Spartan Books, 1972, 1-82.

bSammet, J. E., Survey of Formula Manipulation. Communications of the
Association for Computing Machinery, 1966, J3, 555-569.

expressions expands and shrinks over a large range. A list processing
language allows the allocation of space needed; unneeded space can be
returned to the system. In SYMBOLANG, it is the user's responsibility
to return unneeded space to the system.

SYMBOLANG consists of seventy two subroutines and is operational
on the BRLESC II computer. The SYMBOLANG-SLIP system is stored on the
disc and is accessed by use of the following statement:

■i- r>Ai/n T T r^ i-v T n /-> f\/T *n^ »TT
UUIviriLE U13L, OILA1NU, ALL

SLIP is stored on the disc and is accessed by use of the following
statement:

SLIP is written primarily in FORTRAN and allows the programmer to
create lists, insert and delete items, and scan items on a list. In
SYMBOLANG a SLIP list may be thought of as parenthesized group of
quantities. Since a SLIP list may be placed on a SLIP list, one must
take care never to place a list on itself.

We will assume the reader has a knowledge of FORTRAN and a working
knowledge of SLIP in the sequel of the text.

Expressions are represented as SLIP lists in the following manner
(using the Backus-Naur form):

00

< expression >■*-({< term > } Q)
00

< term > ■*■ (quantity { < factor > < power > } n)

< factor > •*■ { < expression > j j symbol

< power > ■«- quantity | < expression > ,

where the left-hand side of each line represents the class of objects
being defined; the angles < > enclose class names; braces { } indicate
that the enclosed objects are to be included in the definition for each
number of repetitions indicated by the numbers on the right brace; |
separates alternative definitions; quantity is the class of floating
point quantities other than zero; and symbol is the class of expression
symbols.

In keeping with Bernstein's notation, double brackets will be used
to denote real world expressions, and commas will be used between list
elements.

THi l c -f-Hf* £* vmrf* c c -l nn f T fl 1 1 ma\r V\o ranroc an +■ a A oc -f-Vio li ef f "1 l.rK -I r»l-
1 1 1 l_*^ , Luv V/\|/A V^^XV/ll I V; J j 1J1UL F 1^\- 1 ^M4 V^'VIl l-V U O. J LUV X -1. O *- ^ J «lll^l

is enrotv. — - ...r - j .

The expression [[x]] is a nonconstant expression consisting of one
term with coefficient 1, a single factor 1HX, and the power 1. It is
represented as the list ((!., 1HX, i.JJ.

In general a Hollerith constant of from one to ten nonblank char-
acters is used to represent each symbol in an expression. All function
arguments are represented as lists. An expression is broken up into a
sum of terms, where each term is broken up into a product of factors
raised to powers. The trivial coefficient and power 1 are also intro-
duced wherever necessarvs Parentheses without a function name have been
treated as the appearance of a special function name that has arbitrarily
been translated into the expression symbol 3H1.*.

B. Ordering and Simplification

In SYMBOLANG, identical terms differing only in their coefficients
are combined, and a 0 coefficient causes a term to be dropped from an
expression. Identical factors differing onlv in their Dowers are __ _____ _^ ^ _____ _
combined, and a 0 power causes a factor to be dropped. If the constant
expressions [[0]] and [[1]] are raised to any power, they are unchanged.

SYMBOLANG imposes an ordering on all expressions and their com-
ponents. All operations preserve this ordering, and some impose it.
rVl F* r."Pr.*_'»*".r.-T 1 mnf. c*--r1 i c Kn l It lir. -PT-ZMT» r\—_-1 _-*.-.•?-. rrc? r\-r\ TI . .H.T-_ä-^Q ^-n A Ä-_-v. -»äC C "* '"*** *. __w *-> -. _w -_ -Li- £, __._._£_■_■ _>v_ VJ. _l.O UU-Lll, l_«p 11UIII UXU^llllgJ Wll 11 UJ._ll_/t. JL -3 CL11U tA^ltJJlUll

symbols. Numbers are ordered arithmetically and expression symbols lexi-
cographically using the following ordered alphabet:

0123456789ABCDEFG
HIJKLMNOPQRSTUVWX
Y Z + -*/()$=-• * [] ; + < >

with blank corain^ before all other characters. Thus 3H1.* is less than
1HA. which is less than 2HAA which is less than 1H$.

Factors within terms and terms within expressions are reordered to
achieve expressions of the lowest possible ordering. Terms and factors
are combined and dropped where possible as previously defined.

A hand created expression rn_v be simplified by calling subroutine
SMPL (one of the 72 SYMBOLANG subroutines).

SMPL (LIST) reorganizes the expression LIST into simplified form
returning LIST as its value. The operation is timewise expensive and
should be used sparingly.

C Qvct" <__m Mcsao
l . -* J JVVJll ^_--J l_l C%_*

The list of available space must be initialized. For this we can
use:

DIMENSION WORK (5000)
LALL 11N11AO (.«UKN, DUUUJ

ine (_cni LU im iftj aisu sets up a pointer ana iuu puoiit lists in
blank COMMON. These are accessed bv*

COMMON AVSL, X(100)

X(98), X(99), and X(100) are used extensively in SYMBOLANG and
should not be altered by the user.

iii^ ojrjc^ui uo^o naiiit.-) w A. OXA Lliaiattcu ucgiiuung nn.il LU^J LIIV^J

XSO and YTO <;n thp ii<;p-r shnnlH nnt Hpfinp rnntinpi; nr lahplpH rnmmnn

blocks with these characters.

In addition to the SYMBOLANG subroutines, the system requires many
of the SLIP subroutines. For completeness, the author has made avail-
able the entire SLIP package for use with the system.

Following is a list of all the entry points in the SYMBOLANG-SLIP
Dackage.

ADD ADNLWR ADVDL ADVDR ADVLEL

ADVLER ADVLL ADVLNL ADVLNR ADVLR
ADVLWL ADVLWR ADVSEL ADVSER ADVSL
A nl 7f\T T
HU V OIN L.

A T-\I r<?\T r»
M.U V C31N K

A rvi re r»
/A.UVC3K

A mrni.ri auvorvL. A mfCun nuvorm
AT HAH AT r\n ATAM U\J 1 UDPMT

CONT COS CP CPYTRM DELETE

DERROR DLSRDR DVSUM DVTRM EQUAL

EVALUE EXP GETCOE HITENT ICHR

ID INHALT INITAS INITRD INLIST

INLSTL INLSTR INSBST INSUBT INTARG

1IN 1 fcIN 1 INTGER IRADLS T r* » T PtT'
1KALO 1 11WR1JK

ITSVAL KOKE LANORM LCNTR LDATVL

LDIF LEXICO LIST LISTAV LISTMT

LISTON LNKL LNKR LOC LOCARG

LOCT LOFRDR LOOKUP LPNTR LPURGE

LRDRCP LRDROV LSCMPR LSPNTR LSQADD

LSQAPL LSQCDR LSQCMP LSQCNM LSQCPY

LSQCXP LSQDEF LSQDES LSQDSF LSQERR
T pr\Pvir icninn

LJLJV^J. UI\
T CnTMT

IQHMPY T <;DMMI T.SDMN? LSQMN3

LSQMN4 LSQMN5 LSQMN7 LSQMNL LSQMTM

LSQNAM LSQ0U1 LSQ0U2 LSQ0U3 LSQ0U4

LSQ0U5 LSQ0U6 LSQ0U7 LSQ0U8 LSQOUT

LSQPNT LSQRAZ LSQSBS LSQTRC LSQTYP

LSQUMN LSQUN1 LSQUN2 LSQUN3 LSQÜN4

LSQUN5 LSQUN6 LSQUN7 LSQVAL LSQWL
r ccrr>v
Looor i

r CTcnr I CTDDfl
LJ^J I 1 I\W 1-1 V Ul\» J.

LVLRVT MADATR MADLFT MADNBT MADNTP

MADOV MADRGT MAKEDL MAN1 MAN2

MAN3 MAN4 MAN5 MAN6 MAN7

MANY
MTLIST
\T r: Tin TAT lie II vnL

NUMPY
POPBOT
PRIPUT
REED
RITE I
SCHATL
SEQSL

SQOUT
SUB
SUMPY
TRCAL
ZERO

MONO MRKLSS MRKLST MTDLST

NAMEDL NAMTST NEW'BOT NEWTOP
\\r\ ATTfT iiuni v L.

XTT irT! T T
lIUliELlLl

XTI IT CT1!
11 U L.J 1 Li

\T11T CTn
IIULIO 11\

NXTLFT NXTRGT PARMT PARMT2
POPMID POPTOP POWER PRESRV
PRLSTS PUTLST RCELL RDLSTA
REEL RESTOR RITEA RITEF
RITEIT RITEO SAME SBST
SCHATR SEQLL SEQLR SEQRDR
SEQSR SETDIR SETIND SETRAY
C TM
.-> 111

cytn T
Ji'ir Li

cm ire
tD'JLi V U

CnTM

SREED SRTRM STRDIR STRIND
SUBSBT SUBST SUBSTP SUBT
TAN TANH TERM TOP
TRUNC TSTCON VALARG VISIT

The pattern of code in SYMBOLANG is usually to create operands, per-
form expression operations, and to erase unneeded operands.

jii-iuwLinnu itx-L^o iica v J. A. y \JH waning ILUI^LIUILD as J. A. cue)'

routines and usin<* subroutines as if thev were functions. In order to
call a FORTRAN function on the BRLESC II computer, one must provide an
extra argument for the value of the function. This argument does not
need to be accessed by the user, just provided by him. For instance, the
function XFUN(A, B) may be called as follows:

CALL XFUN (C, D, TEMP)

TEMP would contain the value of the function.

In using a subroutine as a function, the subroutine must have at
least one argument. The value of the subroutine cannot, however, be
assumed to be available for use.

Functions and subroutines are often deer>lvr nested in SYMBOLANG.

II. SYMBOLANG SUBROUTINES

A. Basic Set

TVici ciikrnnt -i noc r\f QVMROT AWT. wii 11 Ko Jlci-ncco/l -3 1 nliüKot icollv TVi T cr 1UV JUU11/U1.11IVJ 1_» J_ ^ 1 1-1UV UJU 1U Hill UV Ul. JlrUJ^VU uipnauni \<(lllV , 11110

is arbitrary, but it overcomes artificial groupings according to function
or complexity.

(1) FUNCTION ADD (LIST1, LIST2)

xu iicxo a. iicivci v,uuiiicipai L LJ^AUU nuiLii DIIUUIU uc U.TCU J.JJO u^a-u..

r\uu 1CLUU13 nie; J-COUXL ui auuj.ug cAprcsaiun LIAOIJ. LU cXpicaaiuii blJl^..
T.TST1 i c ^ÄCtrnvft/1 anrl T TQT9 -i c ronl nnaA Kvr l-lio cum

(2) SUBROUTINE ALOAD [ARRAY, VAR1, VAR2, VARK), where
K = 1,55.

ALOAD stores the machine address of the variables VARi into the
array elements ARRAY(I). A call to ALOAD should be made to store ad-
dresses of arguments of any routine that uses INTARG, LOCARG, or VALARG.
ALOAn ha<; a vafiahlp lsnoth rallina •spmipnr.i-» _ AI.OAn returns the argument

count in the event an argument is a floating point 999 (used where
multiple entries are not provided). The argument count is common block
MNYARG.

(3) BREAK (LIST1, SYMBOL, LIST2, LIST3)

BREAK is one of the older SYMBOLANG functions whose use should be
avoided. It has a newer counterpart LSQTRC which should be used instead.
BREAK adds to the expression LIST2 those terms of the expression LIST1
that contain the expression symbol SYMBOL and replaces LIST2 with this
result. The remaining terms of LIST1 are added to the expression LIST3
(which is changed to this new value).

CA\ PDVTDU fl TCT1 ITCT1, ^ t j v., r i l run ^Liui i, LiJiL j

CPYTRM is one of the older SYMBOLANG functions whose use should be
avoided. CPYTRM removes the top element from list or expression LIST1
and places it on the bottom of list or expression LIST2. If LIST1 is
empty, no change is made and CPYTRM returns 0; otherwise, CPYTRM returns
1. Correct ordering is not necessarily preserved, and changes to LIST1
may affect expressions OJ. which it is a subexpression.

r.<n DVSUM fLISTl. SYMBOL. LIST21

DVSUM is one of the older SYMBOLANG functions whose use should be
avoided. It adds to the expression LIST2 the result of dividing ex-
pression LIST! by expression symbol SYMBOL. LIST2 is replaced with this
result which is also returned as the value Ox. tue J.unction.

f61 DVTRM fLISTl. SYMBOL")

DVTRM divides expression LIST1 by expression symbol SYMBOL.

(7) EVALUE (LIST1, SYMBOL 1, QUANT 1, . . ., SYM30L 6, QUANT 6)

EVALUE is one of the older SYMBOLANG functions whose use should be
avoided, A number of other routines are available for evaluation.
EVALUE evaluates the expression LIST1 with the expression symbols SYMBOL
i set to the floating point constants QUANTi. The evaluate returned as
the value of the function also replaces the expression LIST1. EVALUE

""■J <* ij.A\xa iviigi.ii i-aiimj jcijuciac Uli DntCOli ± J. . illC ilUdLUIg puj.nu

value of 999 should be used for SYMBOL i to signify that it and the
arguments which follow it are not to be considered in the evaluations.
Arguments following the 999 flag must be set to zero to insure proper
calling sequence termination.

(8) GETCOE (SYMBOL, QUANT, LIST1, LIST2)

\JUiLUL is one 0i tue oluer SYMBOLANG iiinctions whose use should be
avoided. It adds to the expression LIST2 the coefficient of the expression
symbol SYMBOL raised to the floating nnint rnn^tant nnuer fillANT in thp
expression LIST1, LIST2 is replaced with this expression which is also
returned as the value of the function.

(9) HITENT (LIST1, SYMBOL, LIST2, LIST3)

miLni aisu cuiiLcixiiiiig entry IINICINI ib one oi ine oiaer öIMöULAINU
fnnrtinnc i*rlir\co neo eVinnl^ Ka oimirla/1 T *■ -Mä+-H-*»MI- +-Uä WA.HU n-C nJJi««
tuii^tAuiu r.i»wj^ UJV JJ1UU1U L/^ QVV1UCU, AC ICiUlll^ UllC iC3U!L Ul dUUlJig

a level 1 substitution of the expression LISTl for the expression symbol
SYMBOL in the expression LIST2 to the expression LIST3. INTENT acts
as does HITENT except that the substitution is performed on all levels.
LSQSBS is a replacement for HITENT in the new code.

(luj ICHR (IALPHA)

ICHR returns a number for a letter of the alphabet or the digits
0-9. One is returned for A, 2 for B. . . .,26 for Z, 27 for 0, . . .
and 36 for 9.

(11) INLIST (VAR, QUANT1, QUANT2)

list .representing the eXpieSSiuii fuUnd uii lugicäl
unit or list QUANT1. The variable or array element VAR will also contain
the newlv created expression. INLIST is a means of translating FORTRAN-
like expressions into their internal representation on lists. Input is
handled line by line with columns 7 through 72 scanned for an expression.
If a $ is encountered, or the word NOMOR is encountered in columns 1-5,
or if columns 1-5 are nonblank, the scan ends. Expressions are formed
from symbols and numbers combined by the arithmetic operators +, -, *,
/ „„ J ** U„1„.,~~J «»«—««.1 ~ ,,— J _,,_ / , cUlU " , UdltUlCCU pell ClILIlCMCb , clIIU CUIIUIlcti .

On occasion, it is desirable to have the capability of inputting
an equation. In this instance, if 0UANT2 is set to 3HVAL. it is possible
to input an equation, with the "=" being added to the operator list.
When this option is desired, a double $ is needed to terminate the input
expression. In all cases where an "=" appears and this option is not
desired, QUANT2 should be set to the floating value of 999. In addition,
the expressions before the last equal sign (in case there are more than 1)

11

- -C-C-: are eneüiiveiy comments. for instance, tne input line or tne form
p = M*r**9 - in* Ac <--».oti o i o<- a.A ir-.t-~ *Uo ,„I;J _„„_„„„« ».„».^ „_ _u rnmi u — 11 L, L. — x\j\f 0.0 i. j. cuio iaucu niLu cue vanu icpicsciiidiiun ui LL1UJJ«
Even though these expressions before the last equal sign are effectively
comments, they must conform to the syntax for innut expressions.

(12) INSBST (LIST1, SYMBOL, LIST2, LIST3)

INSBST is one of the older SYMBOLANG functions whose use should be
ovuiucu. J.C ictuiiis LJIC icbun ui auuj.iig tui aii-xeveis buubiituiiu» ur

the expression LIST1 for the expression symbol SYMBOL in the expression
LIST2 to the expression LIST3. LSQSBS is a better choice for this type
of substitution.

(13) INSUBT (LIST1, SYMBOL, LIST2, LIST3, SYMB0L1, QUANT1, . . .,
SYMBOLS, QUANT5)

INSUBT is a function of a fixed number of arguments. The argument
list should be terminated by a floating point value of 999 for the first
symbol SYMBOLi not used, followed by zeros for all remaining arguments.
INSUBT returns the result of adding an all levels substitution of the
expression LIST1 for the expression symbol SYMBOL in the expression LIST2
to the expression LIST3 and then truncating on the expression symbols
SYMBOLi to the powers given by the floating-point quantities QUANTi. The
expression LISIJ) is replaced oy tne result. ii^utsi is one or tne oiaer
cvunriT AMI" »^i■•!-■; ^i<»c- ,.rU^<-a ,,-« ,-Um,-\A u« n^,^i A^A icncuc ~nA J cr\Tur ;-w,„,,i
Ull'lUUDrUlU lUULlll^J HI11UOC U3L7 011 L/ Li J. Li U L7 (X V L» J- Li L7 Li . LJ^JDJ CXI i Li LAJV^IIXLJ JIIVUJ

be used to perform the operations described.

(14) INTARG (ARGS, INT)

INTARG returns the value of the INTth argument ARGS of the routine
that called INTARG. A call of ALOAD must be made before INTARG may be
used.

(15) KOKE (ALPHA)

KOKE stores ALPHA on an internal list and returns 0 if it has not
encountered the last item to be stored and 1 if it has. KOKE is called
by PUTLST an older SYMBOLANG function whose use should be avoided.

(16) LDIF (LIST, SYMBOL)

LDIF returns the derivative of expression LIST with respect to the
expression symbol SYMBOL. Only explicit functional dependence is
considered.

(17) LEXICO (LIST)

IPYTPfl ic a lpYir-norantiiral cnrt nf 1-Vif» pmrpssirm T.TC;T

f T 0~i T T PT/IXT ruin /"\I1A\TTH'\

LISTON is a two argument call to INLIST for input on the standard
input unit (at the BRL unit 5).

(19) LOCARG (ARGS, INT)

LOCARG returns the machine address of the INTth word of ARGS. A
call of ALOAD must be made before LOCARG may be used.

(20) LOOKUP (ITYP. SYMBOL. LIST. TNT^

LOOKUP defines the expression LIST to be the partial derivative of
the function represented by the expression symbol SYMBOL, with respect
to the argument INT, an integer quantity. ITYP is used when the function
is ueterroineu uy use IS determined by user deflnitiunS. If ITYP is not zero, a User-defined

(21) LSCMPR (LA, LB)

LSCMPR compares the terms LA and LB with their coefficients removed.
Zero is returned if LA and LB are equal, -1 if LA is less than LB, and
+1 if LA is greater than LB.

(7?A TSDAnn fITSTI F.TST91

LSQADD returns the sum of expressions LIST1 and LIST2.

(2 3) LSQAPL (NAM, LIST, QUANT)

TC/^AOT n«M 1 £ « « .-1 £- — ~.^ -I _~« XT A II A. *. —. ^ ~ 1 ** TTCTi ~ 1 „11 L. LjOy/ATLi ctppixes tllC i-Ull^UJ-UIl INH1V1 UU BApieSblUll LilOl tuiu a.11 5UQ-
expressions of LIST if QUANT is any value except floating point 999.

(24) LSQCDR (LIST, SEQ)

LSQCDR substitutes a user-defined argument in expression LIST using
sequence reader SEQ.

r?<n idnrMP riA r R TTYPPI

LSQCMP is a lexicographical comparison of LA and LB. If ITYPE is
3HEXP then LA and LB are expressions, if ITYPE is 3HTER, they are terms,
and if ITYPE is 3HFAC, they are factors. If ITYPE is anything else,
LA and LB are terms to be compared as if their coefficients were 1.0.
Note that the sequence readers are advanced if ITYPE is 3HFAC. Zero is
returned if LA and LB are identical, -1 if LA is lexicographically less
than LB, and +1 if LA is lexicographically greater than LB.

(26) LSQCNM (SYMB0L1, SYMB0L2)

13

identical. -1 if SYMB0L1 is lexicographically less than SYMBOL 2 and
+1 if SYMBOL 1 is lexicographically greater than SYMB0L2,

(2 7) LSQCPY (SEQ)

LSQCPY returns a list which is a copy of the items to the right of
Luc Luiiciii. acLuiug ui sequence rcducr oci^.

(28) LSQCXP (LIST)

LSQCXP returns the list or expression LIST or a full copy of LIST
via LSSCPY. The choice is determined by the setting of the variable
LSQCSX in common block LSQCSX. If the variable is 0, the list itself is
leiuriicu; uuiciwisc, L,oo^r i ^iviaij is reiumea,

(29) LSQDEF (SYMBOL, LIST1, LIST2, NOCUR)

LSQDEF defines the symbol SYMBOL to be the expression LIST1 in which
the expression symbols on the list LIST2 hold the places into which any
arguments applied to SYMBOL are to be substituted. Both LIST1 and LIST2
are erased by the call. The user really uses LSQDEF to define his
functions which may be evaluated later in his program.

When NOCUR is 5HN0CUR, the expression symbol SYMBOL is made to appear
undefined. This permits SYMBOL to appear within LIST1 without causing
infinite loops.

LSQDEF must be called with four arguments; however, the first
argument which is an integer 999 effectively terminates tue calling
cdniipnrfl Tli^a rocul t r*-f thp Ca^ 1 1 Tn ft cflnnfln^p i ri t^lc inctanC6 Should be

padded out with zeros.

(30) LSQDES (LIST)

LSQDES erases the list or expression LIST. When a list is no longer
needed, it should be destroyed to make cells available for other lists.

m~l I.SODSF fFIINfT. SYMBOL^

LSQDSF aids in defining and evaluating functions. The FORTRAN
function FUNCT (defined in an external statement) is applied to the next
expression, if any, reached by a right advance of LSQDMF(13). If this
expression is constant, a constant is returned; otherwise, the
»piE3siun symuyji. JII'IUUL IS USCU do a luntuiuu name, emu i.iii.3 cApicj^iun

found by the right advance of LSQDMF(13) as its argument.

(32) LSQERR (ARG)

LSQERR writes an error message and terminates the SYMBOLANG run.
ARG is a Hollerith word giving the name of the routine in which the error
occurred.

f T T \ T «-*•"» C» A V»

LSQGAR returns the next expression to be reached by a right advance
of LS0DMF(13) if there is one. If not- an error is <*iven with expression
symbol SYMBOL as the error message. If SYMBOL = 0, a zero is returned
if there is no next expression in the advance.

(34) LSQGNF (SEQ, NAME, NOARGS)

SEQ is a sequence reader assumed pointing to the first item of a
factor within a term. SEQ is advanced until it points to a non sublist
and the last value of the advancement flaa is returned as the value of
LSQGNF. NAME and NOARGS contain the name of the function in the factor
and its number of arguments.

(35) LSQGTM (LA, VAR, POW1, POW2, LVAL)

See LSQTRC with a calling sequence of LA, VAR, POWi, P0W2, LVAL +1,

(36) LSQIDR

LSQIDR is a subroutine called by LDIF (on its first use) to define
the derivatives of the expression symbols: 3H1.*, 3HSIN, 3HC0S, 3HTAN,
3HC0T, 3HSEC, 3HCSC, 6HARCSIN, 6 HARCCSC, 4HSINH, 4HCOSH, 4HTANH, 4HCOTH,
4HSECH, 4HCSCH, 7HARCSINH, 7HARCC0SH, 7HARCTANH, 7HARCC0TH, 7HARCSECH,
7HARCCSCH, 3HEXP, and 3HLOG. The defined derivatives are respectively:
l.. cosrxi. -siNfxi. sErrx">**2. -nsfifxi **2. T\Ncx^)*<zEc.cY^ -rnTfv*rsrfYi
1/(1 - X**2)**.5. -1/(1-X**2)**.5, 1/(1 + X**2), -1/(1 + X**2).
X**-l*(X**2-l)**-.5, -X**-1*(X** 2-1) **-.5, CÖSH(X), SINH(X), SECH(X)**2,
-CSCH(X)**2, -SECH(X)*TANH(X), -CSCH(X)*C0TH(X), 1/(X**2 + 1)**.5,
1/(X**2-1)**.5, 1/(1-X**2), -1/(X**2-1), -X**-l*(l-X**2)**-.5,
-X**-i*(X**2+I)**-.5, EXP(X), 1/X.

(in\ icniwT
^ *J I J Jjk^U All J.

LSQINI is a subroutine called by LSOVAL (on its first use) to define
the expression symbols: 3HSIN, 3HCOS, 3HEXP, 3HLOG, 3HTAN, 6HARCTAN,
4HTANH, 3H1.*, 2HV., 2HQ. and 3HIF. The definitions represent
respectively: SIN(X), COS(X), EXP(X), LOG(X), TAN(X), ARCTAN(X), TANH(X) ,
the evaluates of the arguments enclosed in parentheses (3H1.*), the argu-

. j. _ i J__ ment evaluated twice ana returned as its vaiue (znv.j,tne unevaiuated
argUmcnt i^iuy. j, aTiu a conuitiona± expression SUCH tnat scanning rrom
left to right, it returns the first even numbered argument following an
odd numbered argument that evaluates to 0 (3HIF.). The value returned

15

is an unevaluated argument. If there is an odd number of arguments,
the last argument is returned unevaluated. In all other cases, 0 is
returned.

Note LSQINI does not define all of the functions whose derivatives
are defined in LSQIDR.

(38) LSQLCO (LIST)

LSQLCO returns a lexicographically ordered copy of expression LIST,

(39) LSQMEX (LIST1, LIST2)

LSQMEX returns the product of expressions LIST1 and LIST2.

(40) LSQMNL (QUANT 1, . . ,, QIJANT25)

LSQMNL returns a list on which its arguments QUANTi, i = 1, 25,
appear. LSQMNL has entries LSQMN1, LSQMN2, LSQMN3, LSQMN4, LSQMN5,
and LSQMN7 to account for calls with 1, 2, 3, 4, 5, and 7 arguments.

(41) LSQMTM (LIST1, LIST2)

LSQMTM returns the product of terms LIST1 and LIST2,

(42) LSQNAM (LNAM)

LSQNAM returns a unique name for each time it is called in its
argument and for its value. 0^

(43) LSQOUT (QUANTI, . . ., OUANT25)

LSQOUT outputs items for function LSQPNT. The argument list is
indexed through and obeyed sequentially. LSQOUT has QUANTi, i = 1, 25
arguments. Entries LSQ0U1, LSQ0U2, LSQ0U3, LSQ0U4, LSQOU5, LSQOU6,
LSQ0U7, and LSQ0U8, are provided to account for calls with i, 2, 3, 4,
5, 6, 7, and 8 arguments respectively. The following argument blocks
are defined:

INITIAL ARGUMENT NUMBER OF ARGUMENTS IN BLOCK

5HFLUSH 1

4HEDGE 2
Sets right margin

6HMARGIN 2
Sets left margin to integer represented by second argument of

16

4HUNIT 2
Switches output to a new logical unit.

5HCFLAG 2 or 3
If second argument of the block is zero, no special continuation
character is to be used (i.e., in initial state); otherwise, the
second argument specifies a column to continue a continuation
flag (usually 6) and the left most non-blank character of the
third argument is used in that column for continuation images.

0 2
Outputs characters to a block or the end of a word.

Positive integer 2
Outputs the specified number of characters from the second
argument which may spread over several machine words.

(44) LSQPNT (LIST, LTITLE, VALU)

LSQPNT is used to print expressions LIST and titles for expressions
LTITLE. All other uses of LSQPNT are for internal use of SYMBOLANG.
The third argument should be set to floating point 999.

(45) LSQRAZ (LIST1, LIST2)

LSQRAZ returns the result of raising the expression LIST1 to the
expression LIST2 power.

(46) LSQSBS (LIST1, SYMBOL, LIST2, INT)

LSQSBS returns the result of substituting expression LIST1 for the
expression symbol SYMBOL in the expression LIST2 through the level
specified by the integer quantity INT. If INT is -1, a substitution is
made on all levels (an infinite loop may occur if LIST1 contains SYMBOL).

(47) LSQTRC (LIST, SYMBOL, QUANT1, QUANT2, INT1, INT2)

LSQTRC returns an expression derived from expression LIST1 by re-
taining certain terms of the expression through level INT1, an integer
quantity, and all terms on deeper levels. A term is retained if it
contains the expression symbol SYMBOL to a nonconstant power or to a
power between the floating point quantities QUANT1 and QUANT2. INT2
helps to determine how the truncation occurs. If INT2 is 1 or 2, one
gets SYMBOL**EXPRESSION TRUNCATED. If INT2 is 2 or 4 one gets SYMBOL**P
truncated, P between QUANT1 and QUANT2, and for INT of 1 or 3, one gets
SYMBOL**P truncated with P not between QUANT1 and QUANT2.

(48) LSQTYP (QUANT, VAR)

17

LSQTYP returns -1 if the nuantitv nUANT is not a list and 0 or
greater if it is a list or expression. The variable VAR is set to the
quantity QUANT if QUANT is not a list. If QUANT is to be considered a
list but not necessarily an expression, then VAR will not contain useful
information.

LSQUMN removes k (k = 1, 25) items from the bottom of list LIST,
the bottom item going to QUANTi, then next to QUANTi-1, etc. The
respective entries LSQUN1," LSQUN2, LSQUN3, LSQUN4, LSQUNS, LSQUN6, and
LSQUN7 are provided to handle calls with 1, 2, 3, 4, 5, 6, or 7 arguments.
It undoes the effect of MANY.

f^m KnvAi nicT HITI

LSQVAL returns the result of evaluating expression LIST through
level INT, an integer quantity. If INT is negative, no limit is in
effect. If INT is 0, a copy of the expression LIST is returned. The
one argument call (i.e., a call with INT = 999) is equivalent to a call
with negative INT.

(51) LSQWL (LIST)

LSQWL returns a location to VISIT in order to evaluate the express-
ion LIST. The scanning of arguments is made possible using LSQDMF(13)
as a communication cell.

\^0<L) lvLftlN I ILilOl, ^UrtJN 1 1 , . . ., l^U/VMlilOJ

MANY places QUANTi, i =• 1, 25. in turn to the bottom of LIST and
returns LIST as its value. The entries MAN1, MAN2, MAN3, MAN4, MAN5,
MAN6, and MAN7 are provided for call with 1, 2, 3, 4, 5, 6, and 7
arguments.

(53) MONO (QUANT)

MOND nrnuiH« tViA niianti tv DIIANT with an integer name. ..^..~ ^^w.^^w^. _..~ n„ -~-/ x • o-- •

(54) NUMPY (LIST, QUANT)

NUMPY is one of the older SYMBOLANG routines whose use should be
avoided. It replaces the expression LIST with the result of muitiply-
ing this expression with the floating point constant yUAN'T anu returns
l_ 1 1^ U1UUULL tAJ L \- J V LA A. UV .

(55) POPMID (VAR)

POPMID returns the list element on top of which the variable VAR
is sitting, removes that element from the list, and advances VAR to

18

the left. VAR is treated as a sequence reader but should not be used if
it was newly created.

(56) POWER [LIST, SYMBOL)

POWER returns the leftmost power to which the expression symbol
SYMBOL is raised in the expression LIST, considering only the first
level. Zero is returned if SYMBOL is not found.

(57) PRIPUT (HOL., LIST)

PRIPUT is one of the older SYMBOLANG routines whose use should be
avoided. PRIPUT is equivalent to LSQPNT and is used for outputting.

V.-3ÖJ tuiLJi ^lOl, i^UHII 1J , . . . , I^UAJN1Z/J

PUTLST is one of the older SYMBOLANG routines whose use should
be avoided. PUTLST returns the expression LIST onto which the terms
QUANTi have been added. If PUTLST is called as above but with a leading
0 in the calling sequence, PUTLST will not reorder factors.

1.03J D/MV1E (QuAlNlj

SAME provides the quantity QUANT with a floating-point name.

(60) SBST (LIST1, SYMBOL, LIST2, LIST3)

SBST acts as does INSBST except that substitution is limited to
one level.

f6n SF.TRAY f\ M D1IAMT-)

SETRAY stores the quantity QUANT into the array A whose dimension
is N.

(62) SMPL (LIST)

SMPL reorganizes the expression LIST into simplified form, returning
LIST as its value. The reorganization is an actual change and can
properly alter an existing expression. The call is a costly one whose
use should be made sparingly.

(63) SOLVE (LIST1, SYMBOL, LIST2)

SOLVE is one of the older SYMBOLANG routines whose use should be
avoided. It assures that the expression LIST1 is linear in the
expression symbol SYMBOL and solves the equation (LIST1 = 0) for SYMBOL.
The solution is added to expression LIST 2 which is replaced by the sum.
The sum is returned as the value of the function.

19

(64) SRTRM(L)

SRTRM replaces term L with terra L sorted lexicographically.

rACt QimrTTCTi ITCTTI

SUB is one of the older SYMBOLANG routines whose use should be
avoided. It returns the result of subtracting expression LIST1 from
expression LIST2. LIST1 is destroyed and LIST2 is replaced with the
difference.

(66) SUBT(LIST, SYMBOL, LIST2, LIST3, SYMB0L1, QUANT1, . . .,

SUBT acts as does INSUBT except that the substitution is limited to
one level. If SYMBOLi is set to the floating point value of 999, it
ends the effective calling sequence which should, however, be padded
out with zeros.

CA71 CMMDV fl TCT1 TTCT"> TTCT"Z CVUOni 1 nilAMTl CVMDni C

QUANT5)

SUMPY is one of the older SYMBOLANG routines whose use should be
avoided. It returns the result of adding the product of expressions
LIST1 and LIST2 to expression LIST3 and truncating on the expression
symbols SYMBOL i to the powers QUANTi. The first SYMBOLi set to

t"h(=> rail ino «pniipncp «Vmiilrl hf> i"»addpd <">"tp wi fVi 7PTnc

(68) TRCAL (LIST, SYMBOLI, SYMB0L2)

TRCAL is one of the older SYMBOLANG routines whose use should be
avoided. It finds the lowest possible power to which the symbol SYMB0L2
is raised in those terms of the expression LIST that contain the
expression symbol SYMBOLI. Then, the expression LIST is replaced by a
truncated copy in which those terms that contain the expression symbol
SYMBOLI to a power greater than that minimal power of SYMBOL 2 are
discarded.

(69) TRUNC (LIST, SYMBOL, QUANT)

TDIfMr1 i <? nns ,-N-F -f-ka r\lA*±* CVMUHTAMf; »nut i rtac i.ltnco lieo ohoiilrl h*z I I\UHU J.O UJ1C ^Ji. U1IC WXLltJ. JiriUVLlTUlU lUULllt^J nuuj^ uj^ OILWIAAII i-f*

avoided« It replaces the expression LIST with the result of discarding
all first level terms that contain the expression symbol SYMBOL to either
a power greater than the floating point quantity QUANT or a non-constant
power.

(70) TSTCON (LIST, VAR)

zu

TSTCON returns 0 if the expression LIST is not a constant expression.
If it is a constant, it returns i and the variable VAR is set to the
CljlUVaiCIll rUMIUAll UUII9 Ldjl I. VdlUC.

f7n VAI.ARG fARGS. TNT1

VALARG is the same as INTARG except that it has a floating point

(72) ZERO (I, J)

7PDf1 TQ-y-i-\o /-111+ T naUr ~-P „-«•»«■■. T

name.

B. Expanded Capability Set
» * t —

In addition to the basic SYMBOLANG subroutines, several other
routines are discussed by Dr. Bernstein. These routines are presented
below.

LSOCON returns an expression equivalent to the constant QUANT*

(2) LSQGCO (SYMBOL, QUANT, LIST)

LSQGCO returns the coefficient of the expression symbol SYMBOL
raised to the power QUANT in the poiynominai LIST.

(3) SUBROUTINE LSQIEQ

LSQIEQ causes 6HEQUAL to be defined as a means of creating defini-
tions. 6HEQUAL arises with the three argument call of INLIST, where
one wants to input an equation. LSQIEQ limits 6HEQUAL to two useful
arguments.

r A ~\ cimnniiTTkin icnrnki

LSOIPN defines the expression symbol 5HPRINT to Drint the value of
its first argument with its second argument as a name.

(5) LSQNDR (LIST, SYMBOL, N)

LSQNDR returns the Nth derivative of expression LIST with respect
UU CApi.COOi.UlI O/iUUUJ. Jil'lUULi

(6) LSONEB (LIST, N)

LSQNEB returns the Nth element from the bottom of list LIST.

21

f71 LSONET fl.IST. NH

LSQNET returns the Nth element from the top of list LIST.

(8) LSQXPN (LIST)

LSQXPN returns a version of the expression LIST in which parentheses
have been largely removed. Parentheses remain only for expressions to
positive or negative fractional powers and to the power -1 unless a non-
constant power is encountered.

III. PROGRAM EXAMPLES

A. Input and Output

The following code may be used to input and output expressions:

PROGRAM INPUT
DIMENSION SP (500)
CALL INITAS (SP. 500)

1 CONTINUE
CALL INLIST (LA, 5HINPUT, 999, TEMP)
CALL LSQPNT (LA, 2HLA, 999., TEMP)

The following input cards run with the above program produce the
output shown below.

Input

All$
AIT j. All*

NOMOR

Output

Ail$

$
$ END OF EXPRESSION

A12 + All$
LA = All + A12

$
* r\ir\ r\T^ i-1 \rn nr c C T'"**T

MDMTIR

22

$ END OF EXPRESSION

An equation may be processed by changing the call to INLIST above
as follows:

CALL INLIST (LA, 5HINPUT, 3HVAL, TEMP)

Thp -Fr> 1 1 nu i n o innnt rnmhinpH with thi c rViancrf» nrnrliirpc thp» niitnnt

below:

E = M*C**2$$
LA = EQUAL. (E, C**2*M)

ip fMr-v r\r< rvnnrrninvi $ EiNu ur EArnnooiuiN

Note that the $■$ is needed to properly terminate a legitimate 3
argument call of INLIST. Note also the use of the cell TEMP with a
call of a FORTRAN function.

a. Aritnmetic calculation

Thp fnl lnuino nrnurani mav KP n<;<=>r1 tn nde\ anr\ mil 11 i r>1 v PiraTpiisinni;

PROGRAM TEST
DIMENSION SPC500)
CALL INITAS (SP, 500)
CALL INLIST (LA, 5HINPUT, 999, TEMP)
CALL INLIST (LB, 5HINPUT, 999, TEMP)
TATT IQDPMT CIA ?HT A QQQ TFMP1

CALL LSQPNT (LB. 2HLB, 999., TEMP)
LC = LSQADD (LA, LB)
LD = LSQMEX (LA, LB)
CALL LSQPNT (LC, 2HLC, 999., TEMP)
CALL LSQPNT (LD, 2HLD, 999., TEMP)

If combined with the input below, the ensuing output results:

INPUT
All$
A12$

<t C\m TMDTIT
<J> l—L* VJ Uli U 1

OUTPUT
All$
A12$

23

LA = All

$ END OF EXPRESSION
LB = A12

$
$ END OF EXPRESSION

LC = All + A12
$
* cim r\c cvnnccct™
$ L^ltU Vjr LAri\LJJlUM

LD = All * A 12
$
$ END OF EXPRESSION

C. Differentiation

lilt! 1U1 lUW-Lllg pXUgXdlll dllUWi U11C LU U11LC1CII LiatC CA^I i C J O J. Ul 10 B1I.M

respect to the expression symbol X.

PROGRAM TEST
DIMENSION SP (500)
CALL INITAS (SP, 500)

1 CONTINUE
n A T ¥ T \ I T T C IT» f T A r I I T V T F* I IT« C\ f\ C\ T T? 1 jf T"> *\
UHLL 11NL1D1 L

LM
-J DiniNrui, y^y, icmrj

in - rmnfiA i IJYI Ltu — LJL'I i v. ijr\ j IHA;

CALL LSQDES(LA, TEMP)
CALL LSQPNT(LB[5HDERIV, 999., TEMP)
CALL LSQDES(LB, TEMP)
GO TO 1
END

Note the use of LSQDES to destroy unneeded expressions and thus
rgi-1 a T jTi S "t G T* clCT C

The input below produces the output which follows.

INPUT
1$
X$
Y**9<f
/\ *. ip

X**N$
1/X**N$
SIN(A*X)/COS(A*X)$
F(X,X,X)$
L0G(N*X) - N*LUG(X)$

OUTPUT

7A

1$
DERIV=0

$
$ END OF EXPRESSION

X$
DERIV=1

$ END OF EXPRESSION
X**2$
DERIV=2*X

$
$ END OF EXPRESSION

X**N$
DERIV=N*X**(-I+N)

$ END OF EXPRESSION
1/X**N$
DERIV=-N*X**(-1-N)

$
$ END OF EXPRESSION

SIN(A*X)/COS(A*X)$
DERIV=A + A*COS(A*X)**(-2)*SIN(A*X)**2

<t

$ END OF EXPRESSION
F(X,X,X)$
DERIV=PARTIAL(N.0,1) + PARTIAL(N.0,2) + PARTIAL(N.0,3)

$
N.O = F(X,X,X)

<t n\m nn nYDDnccmw

L0G(N*X) - N L0G(X)$
DERIV=-N*X**01) + X**(-l)

$
$ END OF EXPRESSION

NOMOR

$
$ END OF EXPRESSION

D. Truncation

biun ;

The toilowing program may De used to truncate a programmed expres-

PROGRAM TEST
DIMENSION SP(500)
CALL INITAS(SP, 500)
LA = LSQMN3(LSQMN1(3.), LSQMN3(5., 1HX, 11.),

l,-X. ..w- V -W. , ill«, I.L., , 1111, *■•))

LAI = LSOTRCCLA, 1HX. n. qqq n m
LA2 = LSQTRC(LA, IHY, 0. . 999. . 0.0)
LA3 = LSQTRC(LA, IHZ, 0., 999., 0,0)
LA4 = LSQTRC(LA, 1HX, 11., 999., 0,0)
CALL LSQPNTCLA, . 2HLA, 999. , TEMP)
/"■ATT rr,/-\rwT'rt/'T«i
I^HLL, LOQKI\ I yuw., 3HLA1, 999., TEMP)

CALL LSQPNTCLA3, 3HLA3, 999., TEMP)
CALL LSQPNTCLA4, 3HLA4. 999= , TEMP)
CALL EXIT
END

The program above produces the following output:

LA = 3 + 5*X**11 - 4*X**22*Y
$"
$ END OF EXPRESSION

LAI = 3
$
$ END OF EXPRESSION

TAO _ "7 f~ -* V * •*- i i
LU\£ - O T D" A" " XI

$
$ END OF EXPRESSION

LA3 = 3 + 5*X**11 - 4*X**22*Y
$
$ END OF EXPRESSION

LA4 = 3 + 5*X**11

* nxm r\c cvnncccrnw
$ uiiu ur LArADJOim^

E. Evaluation

The following program redefines a definition and simplifies an
expression:

PROGRAM TEST
DIMENSION SPC1000)
CALL INITAS (SP, 1000)
LA = LIST(9) "
CALL LSQDES CLSQVALCLA, 999), TEMP)
CALL LSQDES (LA, 999)
CALL LSQDEF (3HI.*, LSQMN1 (L5QMN3

1 (1., 10H$.l.*$.$.$, 1.)), LSQMNi (I0H$.l. *$.$.$), 999, TEMP)
CALL LSQDEF (3HC0S, LSQMNI CLSQMN4C1. , LSQMN2 (LSQMN1 (1.) ,

1 LSQMN3(-1., 3HSIN, 2.)), 3H.1*,.5)), 0, 999 TEMP)
10 CALL INLIST (LA, 5HINPUT, 999, TEMP)

IF (LISTMT(LA) .EQ.0) CALL EXIT
CALL LSQPNT CLA, 5HINPUT, 999, TEMP)
LB = LSQVAL (LA, 999)

CALL LSQDES (LA, TEMP)
CALL LSQPNT (LB, 5HVALUE 1, 999., TEMP)
LC = LSQVAL (LB, 999)
CALL LSQDES (LB, TEMP)
CALL LSQPNT (LC, 6HVALUE2, 999., TEMP)
CALL LSQDES (LC, TEMP)
GO TO 10
END

The following inputs for the above program produce the output shown

INPUT
COS**2 + SIN**2$
COS(X)**2 + SIN(X)**2$
COS(X)*SIN(X)$

OUTPUT
C0S**2 + SIN**2$
INPUT = C0S**2 + SIN**2

$ END OF EXPRESSION
VALUE1 = SIN**2 + fl - SIN**2^

$
$ END OF EXPRESSION

VALUE2 = 1
Ay

$ END OF EXPRESSION
COS(X)**2 + SIN(X)**2$

INPUT = COSm**2 + SIN(X)**2
$
$ END OF EXPRESSION

VALUE1 = SIN(X)**2 + (1 - SIN**2, X)
$
$ ENu ur cXfKnbaiuiN

VALUE2 = 1
$
$ END OF EXPRESSION

COS(X)*SIN(X)$
INPUT = COS(X)*SIN(X)

$
$ END OF EXPRESSION

VALUE1 = SIN(X)*(1 - SIN**2, X)**5E-1
$
$ END OF EXPRESSION
VALUE2 = (1 - SIN(X)**2)**5E-1*SIN(X)

$
$ END OF EXPRESSION

IV. CONCLUDING REMARKS

The full power of SYMBOLANG becomes apparent after one begins to
use it. The subprograms of SYMBOLANG combined with those of SLIP give
the user a wide variety of options for solving a large class of problems.
In addition, one has at his disposal all of the FORTRAN language.

SYMBOLANG may be expanded by the user to include functions and sub-
routines of a general or specific nature. One such set of possible ex-
pansions is an integration package (see e.g. Slagle, J. R., A
Heuristic Program that Solves Symbolic Integration Problems in Freshman
Calculus, Journal of the Association for Computing Machinery, 1963, 10,
507-520). The user also has at his disposal through SYMBOLANG the
capability of defining his own functions and incorporating them into the
system.

28

DISTRIBUTION LIST

No. of
Copies Organization

12 C omin an d ° ^
Defense Documentation Center
ATTN: DDC-TCA
Cameron Station
Alexandria, Virginia 22314

No. of
Copies Organization

U»SS Armv Missile Command
ATTN: AMSMI-R
Redstone Arsenal, Alabama
35809

Lommanaer
U.S. Army Materiel Command
ATTN: AMCDL
5001 Eisenhower Avenue
Alexandria, Virginia 22333

commander
U.S. Army Tank Automotive

Cr\mmn r. A uuiimiaiiu

ATTN: AMSTA-RHFL
Warren. Michigan 48090

1 Commander
U.S. Army Materiel Command
AT'T'XT . Atir*r*j\ n/-" 11 A ^«4 J?J?4 4=U rtiiiN; AiviL>Ku, DLI n. t\. urimtn
5001 Eisenhower Avenue
Alexandria, Virginia 22333

1 Commander
U.S. Army Materiel Command
ATTN: AMCRD-T
5001 Eisenhower Avenue
A1QVOTA^»4O \/i ■*„! „ i „ 1T777

1 Commander
U.S. Army Aviation Systems

Command
ATTN: AMSAV-E
12th § Spruce Streets
St. Louis, Missouri 63166

1 Director
U.S. Army Air Mobility Research

and Development Laboratory
Ames Research Center
Moffett Field, California 94035

2 Commander
U.S. Army Mobility Equipment

Research § Development Center
ATTXT ■ TrtrtU n~~.. Cr Dl J~ 7 1 r
r\l l 11 . 1CU1 UUt-U I^CII, DIUg. OlO

AMSME-RZT
Fort Belvoir. Virginia 22060

1 Commander
U.S. Army Armament Command
Rock Island, Illinois 61202

J. XjWIIIIllLlllUVi.

U.S. Army Harry Diamond
Laboratories

ATTN: AMXDO-TI
Washington, DC 20438

1 Director
Mo tinnnl I3i i -»» >-P CfnnJn.J,

Department of Commerce
Washington, DC 20234

Aberdeen Proving Ground

Hi««-: —~ r

U.S. Army Electronics Command
ATTN: AMSEL-RD
Fort Monmouth, New Jersey
07703

arine v_,oips LäX UIC

Dir, USAMSAA
ATTN: J. SDerrazza

L. Bain
E. Belbot
W. Wenger

29

